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Summary 

Spectral decomposition is a powerful analysis tool used to identify the frequency content of seismic data.  
Many spectral decomposition techniques have been developed, each with their own advantages and 
disadvantages.  The basis pursuit technique produces a high time frequency resolution map through 
formulating the problem as an inversion scheme. This techniques differs from conventional spectral 
decomposition methods in that produces not only frequency information but also phase information. The 
synthetic and real data examples shown in this study illustrate the advantages of the basis pursuit 
method for seismic spectral decomposition. 

Introduction  

Spectral decomposition, also called time frequency analysis, has a wide range of applications in 
geophysics, especially in the area of seismic analysis. Its aim is to reveal signal features such as any 
underlying periodicities, which facilitates the seismic interpretation. Spectral decomposition has been 
utilized in a variety of applications such as  hydrocarbon detection (Fomel, 2013), geological structure 
detection (Liu et al., 2011), stratigraphic delamination (Bonar and Sacchi, 2013) and attenuation estimation 
(Reine et al., 2012).  

Spectral decomposition maps a 1D time signal into a 2D image of frequency and time, which describes 
how the frequency content varies with time. The widely used short time Fourier transform (STFT) 
calculates the fast discrete Fourier transform in each time window to compute the spectrogram. The 
window length of the STFT determines the trade-off between time and frequency resolution. To overcome 
this limitation, the continuous wavelet transform (CWT) was developed by Morlet et al. (1982a and b). 
Chakraborty and Okaya (1995) show the superiority of the CWT over the STFT in terms of spectral 
resolution. Likewise, the S-transform,  proposed by Stockwell et al. (1996),  can be interpreted as a  hybrid 
of STFT and CWT. 

Recently developed spectral decomposition techniques include methods like empirical mode 
decomposition, or EMD, (Han and Van der Baan, 2013), the synchrosqueezing transform (Herrera et al., 
2014) and basis pursuit (BP) (Bonar and Sacchi, 2013). Although the mathematical foundations of these 
methods are different than the CWT, they all show huge improvement on the spectral resolution of the 
data. Tary et al. (2014)  compare these methods with conventional methods such as the STFT, CWT and 
S transform on five benchmark signals, and comment that the recently developed techniques show clear 
improvements in most cases.  

In this paper, we investigate the performance of the basis pursuit method. Instead of only focusing on the 
time frequency amplitude map, we will also investigate the phase information that can be obtained from 
basis pursuit. We first describe the theory of basis pursuit as applied to spectral decomposition. We then 
compare this technique with three conventional methods on a synthetic example. Finally, we use extend 
the basis pursuit attribute as an external attribute for predicting the porosity in the Blackfoot dataset from 
Western Canada.  

Theory  
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The main principle behind basis pursuit (BP) is the  decomposition of a signal into its individual components 
using a predefined dictionary (Chen et al., 2001). Unlike mataching pursuit, BP is not a greedy alorithgm. It 
identifies all atoms and its accociated weights simultaneously into a single inversion problem.  

A seismic trace (t)s  is represented as the convolution of a family  of wavelets (t,n)  and their  accociated 

coefficients ,a(t,n)  as 
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where N  is the number of wavelets, t  is time and n  is the dilation of the wavelet determining its frequency 

(Tary et al., 2014). Using maxtrix notation, equation (1) can be rewritten as  
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where Nψ  denotes the convolution matrix of (t,n) , D  is the wavelet dictionary, and   is the random 

noise. At this stage, a can be intrepretated as the time-frequency dependent refelectivity, which  

corresponds to the time frequency distribution of the seismic trace s . 

Equation (2) is an under-determined linear equation, the solution can be calculated through the least 
squares technique. Since  high time frequenncy resolution is preferred, the sparsity of a  can be controlled 

using the L1 norm. Therefore the cost function is 
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The first term in J represents the data misfit term based on the the L2 norm, which is the least squares 

error between the obseved  and predictied data.  The second term in the cost function determines the 

number of nonzero coefficients in a . The term  is the trade-off parameter controlling the relative strength 

between the two terms.  Various solvers exist for equation (3) , such as iterative reweighted least squares. 
We chose the fast iterative shrinkage thersholding algoithm (Beck and Teboulle, 2009) and implenmented it 
in the frequency domain to enhace the computation efficiency.    

 
Figure 1: Synthetic example. The trace is composed of five Ricker wavelets. From left to right, the wavelets include: 60 Hz with 
zero phase, 40 Hz with 90 degree phase, 30 Hz with -45 degree, 40 Hz with 45 degree, and 20 Hz with 45 degree phase, 
respectively. 

Examples 

We first compare BP with the other three well-known conventional spectral decomposition methods on a 
synthetic data example. The synthetic example (Figure 1) is composed of five different Ricker wavelets 
of various frequency and phase characteristics. From left to right in Figure 1, they are: a zero phase, 60 
Hz Ricker wavelet , a 90 degree phase rotated 40 Hz wavelet, , with a -45 degree rotated 30 Hz wavelet, 
a  45 degree rotated 40 Hz wavelet , and finally a 45 degree rotated 20 Hz Ricker wavelet.   
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The STFT, CWT and S transform algorithms generate reasonable amplitude results, as shown in Figures 
2 (a), (b) and (c). The methods all discriminate the isolated  Ricker wavelets well, but  due to the spectral 
smear  (Tary et al., 2014),  these conventional methods can’t distinguish the two closely spaced wavelets 
between 0.25s and 0.3s, and only show an  asymmetric feature. BP performs the best when compared 
with the other methods (Figure 2(d)), and locates both the amplitude at an accurate time as well as the 
correct frequency, with the highest time frequency resolution.  

Another benefit from BP is the phase information that can be obtained. The phase maps from STFT, 
CWT and S transform (Figure 3 (a), (b) and (c)) are hard to interpret, mainly due to the artefacts from 
spectral smearing. The BP phase map (Figure 3(d)) shows clean and clear features extracted from the 
synthetic data.  By reading the values at the local maximum points, accurate phase information can be 
obtained. Note that a Ricker wavelet dictionary is selected as the predefined dictionary in the BP 
implementation shown here.   

 
Figure 2: Time frequency amplitude map of the synthetic trace. (a). Short time Fourier transform. (b). Continuous wavelet 
transform. (c). S transform. (d). Basis pursuit. 

 
Figure 3: Time frequency phase map of the synthetic trace. (a). Short time Fourier transform. (b). Continuous wavelet transform. 
(c). S transform. (d). Basis pursuit. 

To verify the phase information   from Figure 3(d), we apply a  phase rotation to the synthetic trace, 

using the equation (t) cos x(t) sin H[x(t)].rotx    ,with (t)x  the input trace, and [.]H  the Hilbert 

transform operator (van der Baan, 2008). The red trace in Figure 4 is the trace after the phase rotation, 
which is the zero phase signal. 
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Figure 4: Blue trace is the original synthetic trace shown in Figure 1; the red trace is after phase rotation, which shows the zero 
phase signal feature.  

Next, we apply the BP algorithm to the Blackfoot dataset, and the take the basis pursuit outputs as the 
external attributes for predicting the porosity. The seismic section is shown in Figure 5 view 1, on the left. 
The predicted porosity without using the basis pursuit attributes is shown in Figure 5 view 2, in the middle 
of the display., The  correlation in the target zone is 79%, and the validation correlation is 49%. When the 
basis pursuit amplitude and phase attributes are included, as shown in the right panel of Figure 5, the 
application correlation and the validation correlation in the target zone are improved to 95% and 60%, 
respectively, and the predicted porosity shown in Figure 5 view 3 is much improved. View 3 discriminates 
the upper valley and lower valley features more clearly than the view 2, which are highlighted by the white 
circles. Note that the workflow for predicting the porosity is the EMERGE algorithm in the Hampson-
Russell software package, and the prediction opotion is the probabilistic neural network (PNN). 

 
Figure 5: View 1: (left) seismic section. View 2: (middle) the predicted porosity without the basis pursuit attributes. View 3: (right) 
the predicted porosity using the basis pursuit attributes.  The white circles highlight the key geological features. 

Conclusions 

In this paper we have demonstrated that the basis pursuit algorithm produces higher time frequency 
resolution than conventional methods of spectral decomposition, and that both amplitude and phase 
information can be accuarately calculated. The synthetic and real data examples shown here illustrate the 
improved performance found when using the basis pursuit method. 
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