Role of Groundwater Dynamics in the Genesis of the Athabasca Oil Sands

K. Udo Weyer and James C. Ellis
WDA Consultants Inc. (corresponding author: weyer@wda-consultants.com)

Summary

The regional groundwater dynamics caused by the “low fluid-potential drain” (Hitchon, 1969) is associated with flow through highly permeable karst. The amounts of winter discharge from the Paleozoic karst into the Athabasca River allows the general estimation of the rate of groundwater with oxygen annually penetrating the oil sands layer. The associated oxygen and biodegradation are assumed to be important agents for the transformation of oil into heavy oil and tar. The paper puts emphasis on the often-neglected impact of groundwater dynamics on geochemical processes.

Introduction

Regional flow systems have been the centre of attention within the Alberta basin since the work of Tóth (1962) and Freeze and Witherspoon (1967). Subsequently, Hitchon (1969) arranged head distributions at various depths in 2D horizontal slices along a series of vertical cross sections ranging from the Rocky Mountains to the edge of the Canadian Shield as shown in Figure 1. Figure 2 shows two of the 2D vertical cross-sections containing a low fluid-potential drain. Hitchon (1969, p.186) describes its function as follows:

“The presence of a thick sequence of highly permeable Upper Devonian and Carboniferous carbonate rocks in the medium-depth portion of the Alberta basin has resulted in the development of a low fluid-potential drain, which essentially channels flow from most of the Alberta basin towards the Athabasca oil sands and has modified the theoretical relation between local and regional flow systems.”
The cross-sections in his Figure 2 show that Alberta’s major rivers draw up the deeper groundwater flow, as do some of the minor ones. The exception is the area of the low fluid-potential drain which captures deep and shallow groundwater flow and delivers it “towards the Athabasca oil sands” (Hitchon 1969, p. 186). In Figure 1 the cross-sections A’-E’ and B-B” outline the approximate lateral extent of the low fluid-potential drain. Transferring those points onto our location map and connecting them schematically yields an estimate of the approximate outline of the ‘low fluid-potential drain’ (red hatched area in Figure 1). By including sinkhole locations identified by Bayrock (1971), the northeastern portion of the ‘low fluid-potential drain’ was modified as shown in Figure 3. Figure 4 shows the degree to which the low fluid-potential drain underlies much of the Athabasca oil sands. This implies that the Athabasca oil sands have been penetrated by recharged groundwater flowing downward into the Paleozoic karst whose position along the Cretaceous/Devonian unconformity is indicated in Figure 5.

Figure 3 (left): Extension of Hitchon’s (1969) “low fluid-potential drain” area by inclusion of sinkhole locations identified by Bayrock (1971).

Figure 4 (right): Schematically-estimated extent of Hitchon’s (1969) “low fluid-potential drain” [including the Bayrock (1971) extension] in relation to the position of the Athabasca oil sands, including the sub-area of the Wabasca oil sands. Extent of oil sands indicated by an orange overlay.
Flow rate of groundwater and associated transport of oxygen through the oil sands

Due to the hilly topography and its incised major river valleys, all of the area of the Athabasca oil sands is dominated by groundwater recharge and associated downward flow with high gradients except for the incised valleys which are discharge areas with high upward directed gradients. These flow systems have been modelled and reported by Weyer (2006) and Weyer et al. (2012), based on measured lateral equipotential lines reported by DCEL (2005). Thus it appears that a constant stream of oxygen has been delivered into and through the oil layers of the Athabasca oil sands for as long as such gravitational groundwater flow systems have been operative.

Figure 5: Schematic SW-NE stratigraphic section in the region of the Wabasca oil sands (modified from Machel et al., 2012, Fig. 5). The figure is highly exaggerated vertically. The actual SW-dip of the layers is about 1°.
We will now turn our attention towards hydrograph data measured by the Water Survey of Canada (WSC) for the Athabasca and Clearwater River just below their confluence downstream of Fort McMurray and for a collection of river flow hydrographs typical to the region outside of these two catchment basins (Figure 6). The winter discharge of the Athabasca River has a much higher flow [appr. 1.3 l/km\(^2\) s] than rivers not affected by water discharging from the “low fluid-potential drain” [appr. 0.3 l/km\(^2\) s]. The winter low flows have been compared in Figures 6 and 7 with the procedures and results consolidated in Table 1. The estimated rates of groundwater recharge flowing downwards through the oil sands with associated oxygen migration have been estimated in Table 1 to be between 50-100 mm/year during the winter season. The annual flow rate may be considerably higher when taking summer conditions with its active recharge into account. It appears that the estimated rates of groundwater flow downwards through the oil sands with associated oxygen migration are sufficient to induce weathering processes and biodegradation, causing heavy oil and tar to develop.

<table>
<thead>
<tr>
<th>catchment area</th>
<th>area</th>
<th>normalized discharge</th>
<th>January</th>
<th>recharge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>km(^2)</td>
<td>l/s km(^2)</td>
<td>l/s</td>
<td>m(^3)/s</td>
</tr>
<tr>
<td>measured normalized flow:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>from hydrographs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Regional WSC stations (red hydrograph)</td>
<td></td>
<td>--</td>
<td>0.3</td>
<td>--</td>
</tr>
<tr>
<td>2 Athabasca/Clearwater basin (black hydrograph)</td>
<td>132,000</td>
<td>1.3</td>
<td>171,600</td>
<td>171.6</td>
</tr>
<tr>
<td>3 Non-karstic part within A/C basin</td>
<td>86,900</td>
<td>0.3</td>
<td>26,100</td>
<td>26.1</td>
</tr>
<tr>
<td>calculated flow from karst:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total LFPD - Hitchon drain (Paleozoic karst)</td>
<td>102,000</td>
<td>1.4</td>
<td>[4]</td>
<td>--</td>
</tr>
<tr>
<td>5 Karst within the A/C basin</td>
<td>45,100</td>
<td>3.2</td>
<td>[5]</td>
<td>--</td>
</tr>
<tr>
<td>6 Karst within A/C basin + assumed subsurface drain</td>
<td>67,900</td>
<td>2.1</td>
<td>[6]</td>
<td>--</td>
</tr>
</tbody>
</table>

Table 1. Estimation of recharge through the Athabasca oil sands into the Paleozoic karst, based on winter low-flow measurements in the Athabasca River at WSC gaging station 07DA001.

Conclusions

The regional groundwater dynamics caused by the “low fluid-potential drain” (Hitchon, 1969) is associated with flow through highly permeable karst. The amounts of winter discharge from the Paleozoic karst into the Athabasca River allows the estimation of the rate of groundwater with oxygen annually penetrating the oil sands layer. The associated oxygen and biodegradation are assumed to be important agents for the transformation of oil into heavy oil and tar. The paper puts emphasis on the often-neglected impact of groundwater dynamics on geochemical processes.

References

Bayrock, L. A., 1971. Surficial Geology, Bitumount. NTS 74E, 1:250,000. Published by the ARC.

